

Lindab **AIRY**

Valvole di mandata e ripresa

Descrizione

La valvola è studiata per installazioni a parete e a soffitto, in edifici esistenti o di nuova costruzione. L'installazione risulta rapida grazie ad un sistema di fissaggio intelligente. Dati sonori rivoluzionari che garantiscono ottimi livelli di rumorosità. La valvola si compone di due parti: il corpo valvola (AIRYB) e il frontale piatto (AIRYFP). Il corpo valvola è fissata al canale o a flangia a baionetta tramite alette flessibili. Il frontale si fissa al corpo valvola tramite molle.

Il frontale è disponibile in 5 forme standard:

ROUN - circolare

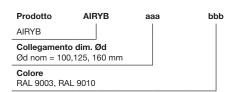
BOW - quadrato con lati arrotondati

SQUA - quadrato

ELLI - ellittico

RECT - rettangolare

Forme speciali sono possibili su richiesta.

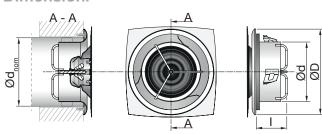

E' consigliato installare la valvola con cornice mod. ILVRU. La valvola si adatta anche a manicotti tipo VRGU, VRGM, VRFU, VRFM e prodotti quali BUCST, e TCPUCST. La dimensione massima esterna per Ø100 è di 133,5 mm, per Ø125 è di 152,5 mm e per Ø160 è di 187,5 mm.

Può essere dotata di piastra di bloccaggio a 2 o 3 vie.

Manutenzione

Le parti visibili possono essere pulite con un panno umido. Il filtro sonoro può essere pulito o sostituito se necessario, questo è particolarmente importante per la ripresa dell'aria.

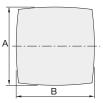
Esempio di ordinazione



Esempio: AIRYB - 125 - 9003

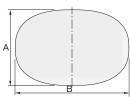
Esempio: AIRYFP - 125 - ELLI - 9003

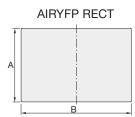
Dimensioni



Ød	Ød	ØD	I	m
nom	mm	mm	mm	kg
100	84	138	55	0,13
125	109	157	58	0,18
160	144	191	58	0,28

AIRYFP BOW


AIRYFP ROUN



AIRYFP ELLI

Ød	Α	В	T:	m
nom	mm	mm	Tipo	kg
100	140	140	BOW	0,17
100	140	210	ELLI	0,21
100	140	140	ROUN	0,13
100	140	210	RECT	0,24
100	140	140	SQUA	0,17
125	165	165	BOW	0,22
125	165	248	ELLI	0,29
125	165	165	ROUN	0,18
125	165	248	RECT	0,33
125	165	165	SQUA	0,23
160	210	210	BOW	0,34
160	210	315	ELLI	0,44
160	210	210	ROUN	0,28
160	210	315	RECT	0,53
160	210	210	SQUA	0,35

Materiali e finitura

Materiale: Acciaio zincato.

Colore: Bianco RAL 9003, gloss 30 o

bianco RAL 9010, gloss 30.

Altri colori disponibili su richiesta.

Il frontale può essere ordinato in acciaio inox.

E' possibile, inoltre, verniciare il frontale con il colore della parete o ricoprirlo con carta da parati.

AIRY

Dati tecnici

Dimensionamento

l diagrammi mostrano la portata q_v [l/s] e [m³/h], il lancio $l_{0,2}$ [m²] e il livello di potenza sonora L_{wA} [dB(A)].

Livello di potenza sonora

Il livello di potenza sonora in banda di frequenza è definita come $L_{_{WA}}+K_{_{ok}}$ l valori $K_{_{ok}}$ sono specificati sotto i grafici delle pagine a seguire.

Attenuazione acustica

Attenuazione acustica del diffusore ΔL , inclusa la riflessione di estremità, in funzione del diametro di ingresso: vedere la tabella riportata di seguito.

Ød		Frequenza centrale [Hz]						
nom	63	125	250	500	1K	2K	4K	8K
100	22	18	13	11	9	8	7	8
125	20	16	11	9	9	7	6	5
160	18	14	10	9	9	7	6	6

Bilanciamento

I dati per il bilanciamento sono contenuti in un documento separato.

Piastra di bloccaggio

Correzione della rumorosità e del lancio

Quando viene utilizzata la piastra di bloccaggio, calcolare il fattore di correzione C e utilizzarlo per ricavare i dati corretti di rumorosità e lancio.

 $C = ((\alpha / 360)+1)$

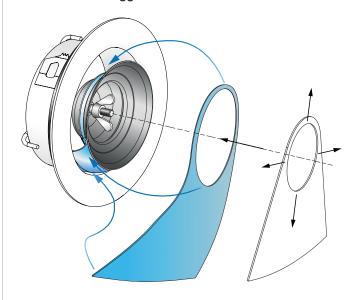
La corretta portata da utilizzare per ricavare i dati dal diagramma = $C \times q_v$

Esempio

AIRY-125

angolo piastra α : 120° Portata q_v : 20 l/s Perdita di carico Δp_t richiesa: 50 Pa

C = ((120 / 360) + 1) = 1,33


La corretta portata da utilizzare per ricavare i dati dal diagramma = $1,33 \times 20 \text{ l/s} = 27 \text{ l/s}$

Dati corretti:

Livello di potenza sonora L_{WA} : 30 dB(A) Impostazione fessura per 50 Pa: 12 mm Lancio $I_{0.2}$ (fessura 12 mm): 2,6 m

Accessori

Piastra di bloccaggio

Esempio di ordinazione

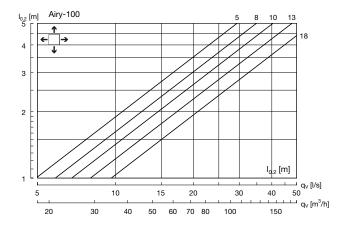
Prodotto	AIRYBP	aaa			
AIRYBP					
Collegamento dim. Ød					
Ød nom = 100	,125, 160 mm				

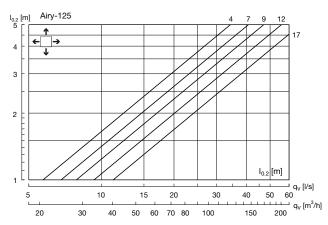
Esempio: AIRYBP - 125

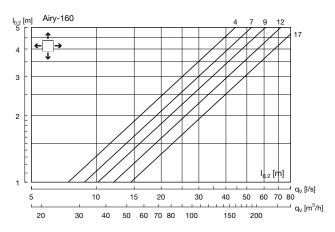
Filtro sonoro

Esempio di ordinazione

Prodotto	AIRYSI	aaa			
AIRYSI					
Collegamento dim. Ød					
\varnothing d nom = 100	0,125, 160 mm				

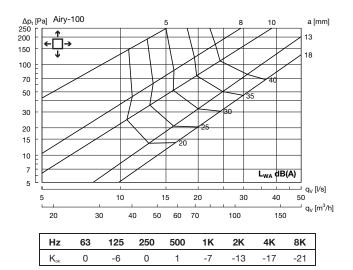

Esempio: AIRYSI - 125


Sostituzione del filtro sonoro

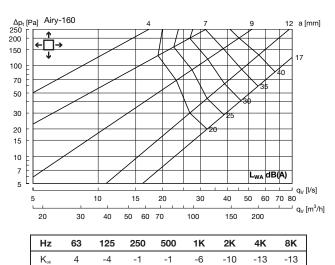

Il filtro sonoro può essere sostituito rimuovendo il supporto e poi il filtro stesso. Fissare quindi il nuovo filtro sonoro sulla piastra frontale e, a seguire, fissare il supporto sul filtro.

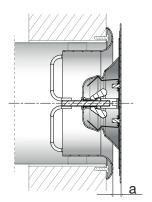
Dati tecnici

Lancio I_{0,2} II lancio $I_{0,2}$ [m] è indicato per aria isoterma ad una velocità finale di 0,2 m/s.

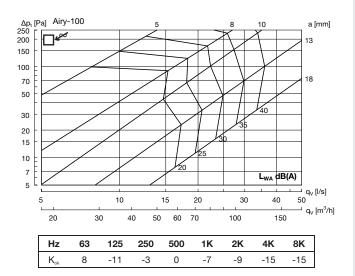




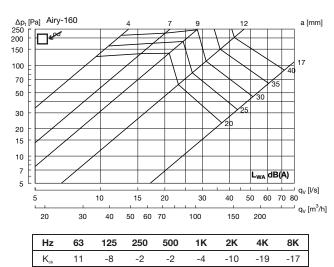

AIRY

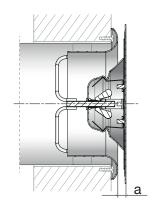

Dati tecnici

Mandata






AIRY


Dati tecnici

Ripresa

Airy con curva e tee

Valori di correzione della rumorosità

Aggiungere questo valore ai diagrammi di mandata e ripresa, quando si utilizzano tee o curve.

Mandata

Ød1 nom	TCPU	BKU	BU	BSU
100	3	1	1	0
125	2	2	1	0
160	5	5	4	3

Ripresa

Ød1 nom	TCPU	BKU	BU	BSU
100	2	1	0	0
125	2	2	1	0
160	5	5	4	2

Molti di noi passano la maggior parte del tempo al chiuso. Il clima degli ambienti interni è cruciale per come ci sentiamo, quanto siamo produttivi siamo e se ci manteniamo in salute.

Per noi di Lindab l'obiettivo più importante è contribuire a un clima degli ambienti interni che migliori la vita delle persone. Lo facciamo sviluppando soluzioni di ventilazione efficienti dal punto di vista energetico e prodotti per l'edilizia durevoli. Vogliamo anche contribuire a un clima migliore per il nostro pianeta, lavorando in un modo che sia sostenibile sia per le persone che per l'ambiente.

Lindab | Per un clima migliore

